Circuit Protectors

NC1V

IDEC's original Spring-up Terminals and Cover.
Provide IP20 Finger-safe Protection.

- Note: TÜV, CE, and CCC marks are applicable for series trip type only.
- See website for details on approvals and standards.

Finger-safe, spring-up terminal reduces wiring time.

Ring terminal tabs can be installed easily, and screws are held captive.

Main Circuit Terminals are Fingersafe (IP20)
Spring-up, fingersafe structure requires no terminal cover.

Auxiliary/Alarm Contact Terminals are Equipped with a Terminal Cover

Voltage coil terminals on the relay trip version are also equipped with a terminal cover as standard.

Retractable Actuator

The actuator is retracted while the circuit protector is turned on. Inadvertent operation, due to touching the actuator, can be prevented.

Rated Short-circuit Capacity 2500A

Available with Inertial Delay

Allows for use with large inrush currents such as motors

Safe Trip-free Mechanism

The circuit remains open even when the operator is turned on after tripping (unit must be manually reset after removing the cause of the tripping).

Padlock Attachment

Locks the retractable actuator in the off position to prevent NC1V from being switched on inadvertently.

NC1V Circuit Protectors

IDEC's original spring-up, fingersafe terminals enhance reliability and safety.

Specifications

Shape				
Part No.		NC1V		
Operator Style		Retractable actuator		
Internal Circuit		Series trip (current trip), Relay trip (voltage trip)		
Protection Method		Hydraulic magnetic tripping system, Magnetic tripping system (voltage trip)		
No. of Poles		1-pole	2-pole	3-pole
Rated Voltage (AC/DC) (*1)		250V AC 50/60Hz, 65V DC	250 V AC $50 / 60 \mathrm{~Hz}, 125 \mathrm{~V}$ DC	250 V AC, $50 / 60 \mathrm{~Hz}$
Series Trip (Current Trip)	Rated Short-circuit Capacity	$\begin{aligned} & 250 \mathrm{~V} \mathrm{AC}, 2500 \mathrm{~A} \\ & 65 \mathrm{~V} \text { DC, } 2500 \mathrm{~A} \\ & \hline \end{aligned}$	250V AC, 2500A 125V DC, 2500A	250 V AC, 2500A
	Rated Current	$0.1 \mathrm{~A}, 0.3 \mathrm{~A}, 0.5 \mathrm{~A}, 1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}, 5 \mathrm{~A}, 7 \mathrm{~A}, 10 \mathrm{~A}, 15 \mathrm{~A}, 20 \mathrm{~A}, 25 \mathrm{~A}, 30 \mathrm{~A}$		
	Trip Characteristics (*2)	Time delay curve curve M (slow), curve A (medium), S (instantaneous) Curves M and A are avilable with inertial delay.		
Relay Trip (Voltage Trip) (*3)	Rated Current	30A		
	Trip Voltage	24 to 48 V DC (at $25^{\circ} \mathrm{C}$) Voltage application duration 10 sec maximum, tripping time 0.1 sec maximum (at rated voltage)		
Auxiliary Contact/Alarm Contact	Contact Rating	125V AC 3A (resistive load), 30V DC 2A (resistive load)		
	Minimum Applicable Load	24 V DC 1mA (resistive load, reference value)		
Insulation Resistance		$100 \mathrm{M} \Omega$ minimum (500V DC megger)		
Dielectric Strength		2000 V AC, 1 minute (between terminals when main contacts are open, between live parts of different poles, between live and dead parts) 600 V AC (between terminals when auxiliary circuits are open)		
Vibration Resistance (with rated current applied)		Damage limits: $\quad 147 \mathrm{~m} / \mathrm{s}^{2}(10$ to 55 Hz$)\left(1\right.$-pole, 2 -pole), $78 \mathrm{~m} / \mathrm{s}^{2}(3$-pole)Operating extremes: $98 \mathrm{~m} / \mathrm{s}^{2}\left(1\right.$-pole, 2 -pole), $78 \mathrm{~m} / \mathrm{s}^{2}(3$-pole)		
Shock Resistance (S time delay curve: 80\% rated current, A, M time delay curve: 100% rated current)		Damage limits: $\quad 490 \mathrm{~m} / \mathrm{s}^{2}$ (1-pole, 2-pole), $297 \mathrm{~m} / \mathrm{s}^{2}$ (3-pole)Operating extremes: $196 \mathrm{~m} / \mathrm{s}^{2}$		
Electrical Life		10,000 cyles minimum (at rated curent), 10 operations per minute		
Reference Temperature		$40^{\circ} \mathrm{C}$		
Operating Tempperature		-10 to $+60^{\circ} \mathrm{C}$ (no freezing) Rated current is based on an ambient temperature of 40°. When the operating temperature exceeds $40^{\circ} \mathrm{C}$, derate the rated current by using the factors shown below.		
Storage Temperature		-40 to $+60^{\circ} \mathrm{C}$ (no freezing)		
Operating Humidity		45 to 85\% RH (no condensation)		
Storage Humidity		45 to 85\% RH (no condensation)		
Terminal Style	in Circuit Terminal	Spring-up, fingersafe terminal: M4 screw (up to 20A), M5 screw (25A and 30A)		
	xiliary/Alarm Contacts, tage Coil Terminal	M3.5 screw		
Weight (approx.)		1-pole: 90 g , 2-pole: $170 \mathrm{~g}, 3$-pole: 260 g		

*1) 3-pole type is for AC voltage only.
*2) For S (instantaneous) tripping curve, humming sound may be caused when used in an AC sinusoidal-wave current circuit around 80% of the rated current, however, the performance of the circuit protector will not be affected.
To avoid unnecessary tripping, do not use in circuits where inrush currents may be present.

Operating Temp.	Derating Factor
$50^{\circ} \mathrm{C}$	0.9
$55^{\circ} \mathrm{C}$	0.8
$60^{\circ} \mathrm{C}$	0.7

*3) Relay trip (voltage trip) type is not equipped with an overcurrent trip function.

- Do not use the NC1V circuit protectors in environments where they are exposed to extreme temperature, humidity, dust, corrosive gases, vibration, shock, or in a circuit where inrush current may be present, otherwise unnecessary operations and damage may occur.

NC1V Circuit Protectors

 LED Illumination
Controllers

Operator Interfaces
Sensors
AUTO-ID

- Specity rated current, time delay curve, or voltage trip coil voltage in place of 6 有 8 in the Part No.

Note: Inertial delay is for AC circuit. Also, time delay curve of S (instantaneous) is not available with inertial delay.

NC1V Circuit Protectors

Internal Circuit
1-pole

NC1V-1100 (Without auxiliary/alarm contacts)	NC1V-1111 (With auxiliary contact)	NC1V-1121 (With alarm contact)	NC1V-1500 (Relay Trip)

2-pole

NC1V-2100 (Without auxiliary/alarm contacts)	NC1V-2111 (With auxiliary contact)	NC1V-2121 (With alarm contact)	NC1V-2500 (Relay Trip)

3-pole

NC1V-3100 (Without auxiliary/alarm contacts)	NC1V-3111 (With auxiliary contact)	NC1V-3121 (With alarm contact)	NC1V-3500 (Relay Trip)
	One auxiliary contact. Also available with two or three auxiliary contacts.	One alarm contact. Also available with one auxiliary and one alarm contacts, and two auxiliary and one alarm contacts.	

Overcurrent-Time Delay Characteristics (sec at $40^{\circ} \mathrm{C}$) [vertical mounting]

Item	Time Delay Curve	Percent of Rated Current								
		100\%	125\%	150\%	175\%	200\%	400\%	600\%	800\%	1000\%
AC ($50 / 60 \mathrm{~Hz}$)/DC	S (instantaneous)	NO TRIP	-	$\begin{aligned} & * 0.005 \\ & \text { to } 0.1 \end{aligned}$	$\begin{aligned} & 0.003 \\ & \text { to } 0.06 \end{aligned}$	$\begin{aligned} & 0.0027 \\ & \text { to } 0.05 \end{aligned}$	$\begin{aligned} & \hline 0.002 \\ & \text { to } 0.03 \end{aligned}$	$\begin{gathered} 0.002 \\ \text { to } 0.028 \end{gathered}$	$\begin{gathered} \hline 0.002 \\ \text { to } 0.025 \end{gathered}$	$\begin{gathered} \hline 0.002 \\ \text { to } 0.022 \end{gathered}$
	A (medium)	NO TRIP	*25 to 240	16 to 140	-	6 to 32	0.4 to 4	$\begin{gathered} 0.0055 \\ \text { to } 1.5 \end{gathered}$	$\begin{aligned} & 0.004 \\ & \text { to } 0.8 \end{aligned}$	$\begin{aligned} & 0.004 \\ & \text { to } 0.65 \end{aligned}$
	M (slow)	NO TRIP	*60 to 600	30 to 200	-	9 to 60	0.4 to 10	$\begin{aligned} & 0.006 \\ & \text { to } 4.5 \end{aligned}$	$\begin{aligned} & 0.004 \\ & \text { to } 1.8 \end{aligned}$	$\begin{aligned} & 0.004 \\ & \text { to } 0.8 \end{aligned}$
AC ($50 / 60 \mathrm{~Hz}$)	With Inertial Delay A (medium)	NO TRIP	25 to 240	-	-	6 to 32	0.8 to 6	$\begin{aligned} & 0.09 \\ & \text { to } 3.5 \end{aligned}$	$\begin{aligned} & 0.02 \\ & \text { to } 1.8 \end{aligned}$	$\begin{aligned} & \hline 0.01 \\ & \text { to } 1.0 \end{aligned}$
	With Inertial Delay M (slow)	NO TRIP	60 to 600	-	-	10 to 60	0.8 to 10	$\begin{aligned} & 0.06 \\ & \text { to } 4.5 \end{aligned}$	$\begin{aligned} & 0.02 \\ & \text { to } 3 \end{aligned}$	$\begin{gathered} 0.01 \\ \text { to } 1.75 \end{gathered}$

*: May trip on DC.

NC1V Circuit Protectors

Time Delay Curve and Ambient Temperature
NC1V circuit protectors employ an electromagnetic tripping system, where the rated current (trip current) is not affected by ambient temperatures. But the time delay may vary with the oil viscosity in the oil dash pot. Lower oil viscosity at higher temperatures results in a shorter delay, whereas at lower temperatures the delay will be longer.

Temperature Correction Curve

The time delay curves on the preceding page are measured at $40^{\circ} \mathrm{C}$. With reference to the following curves, time delays can be corrected according to ambient temperature.

The time delay is based on an ambient temperature of $40^{\circ} \mathrm{C}$. Time delays at other temperatures are corrected according to the temperature correction curve. The time delay of the instantaneous time delay curve (S) is not affected by the ambient temperature.
When operating temperature exceeds $40^{\circ} \mathrm{C}$, derate the rated current by multiplying the derating factor shown on the right.

Operating Temp.	Derating Factor
$50^{\circ} \mathrm{C}$	0.9
$55^{\circ} \mathrm{C}$	0.8
$60^{\circ} \mathrm{C}$	0.7

Impedance and Coil Resistance
Series Trip (Current Trip) (initial value) at $25^{\circ} \mathrm{C}$

Rated Current	For AC 50/60 Hz Impedance (Ω)		For DC Resistance (Ω)	
	Curve S	Curves A, M	Curve S	Curves A, M
0.1A	66.0	116.0	43.0	106.0
0.3A	6.6	11.0	4.1	10.0
0.5 A	1.92	3.65	0.86	3.40
1A	0.50	0.93	0.25	0.90
2A	0.16	0.27	0.11	0.25
3A	0.07	0.12	0.050	0.11
5A	0.025	0.050	0.015	0.045
7A	0.014	0.027	0.011	0.025
10A	0.007	0.021	0.005	0.020
15A	0.006	0.010	0.005	0.009
20A	0.005	0.006	0.004	0.005
25A	0.004	0.005	0.004	0.005
30A	0.003	0.004	0.003	0.004

Tolerance: $\pm 25 \%$ (up to 20A),
$\pm 50 \%(25 \mathrm{~A}$ and 30 A$)$
Relay Trip (Voltage Trip)
at $25^{\circ} \mathrm{C}$

Tripping Voltage	For DC Resistance (Ω)
$24-48 \mathrm{~V}$	100.0

Tolerance: $\pm 25 \%$

Inertial Delay

Inertial delay is designed not to trip on a non-repeating single pulse of 20 times the rated current (peak value) for a duration of 8 ms . In addition, circuit protectors equipped with inertial delay do not respond to high inrush currents caused by transformer or lamp loads, but perform the specified interruption on the subsequent overcurrents. Inertial delay is available on AC circuits, and is not available with the series trip curve S (instantaneous).

Voltage Drop Due to Coil Resistance or Impedance
The internal resistance or impedance of a circuit protector tends to be larger for a smaller rated current. Therefore, when circuit protectors of a small rated current are used, voltage drop should be taken into consideration. Internal resistance also varies with time delay curves, which should also be considered during installation.

Main Contact - Auxiliary/Alarm Contact

[Auxiliary Contact]

Main Contact	N0 ontact	NC Contact
ON	closed	open
Tripped	open	closed
OFF	open	closed

[Alarm Contact]

Main Contact	N0 ontact	NC Contact
ON	open	closed
Tripped	closed	open
OFF	open	closed

\qquad

NC1V Circuit Protectors

3-pole

Note: Cannot be used with NC1V with auxiliary or alarm contact.

Accessories

Dimensions

NC9Z-MA Panel Mounting Bracket

Dimensions A and B

Dimension	A	B
1-pole	21.2	17.8
2-pole	38.7	35.3
3-pole	56.2	52.8

Mounting Hole Layout

Panel Mounting Screw Length (Dimension C in mm)
Applicable Panel Thickness: 0.8 to 3.2 mm
The outside diameter of the M3 screw (including washer) must be 7 mm maximum.

Panel thickness (mm)	0.8	1.0	1.2	1.4	1.6	1.8	2.0	2.3	2.6	3.2
Without washer	5	5	6	6	6	6	6	8	8	8
With plain washer (0.5 thick) जु	6	6	6	6	6	6	8	8	8	8
With spring washer (0.7 thick) 0-	6	6	6	6	6	8	8	8	8	8
With plain washer (0.5 thick) and spring washer (0.7 thick)	6	6	6	8	8	8	8	8	8	8
Countersunk head screw	-	-	-	-	-	-	6	6	8	8

Tightening torque: 0.5 to $0.8 \mathrm{~N} \cdot \mathrm{~m}$

All dimensions in mm.

NC9Z-TA1 Wiring Clip

Insulation Sleeve

When using wiring clips on 2- or 3-pole circuit protectors, install UL/CSA-rated insulation sleeves on the crimping terminals to ensure the air gap required by UL1077.
Applicable Insulation Sleeves (Example)

- Nissei Eco (V-38)
- Tokyo Dip (TP-038)
- Nichifu (TIC38)

Applicand C Cimpining Teminal

Tightening torque: 1.8 to $2.2 \mathrm{~N} \cdot \mathrm{~m}$
Materials

- Panel Mounting Bracket: Steel
- Wiring Clip: Brass (terminal strip) Steel (screw, washer)

The screw length behind the panel must be 9 mm maximum.

.

NC9Z-PW1 Marking Plate

Marking Plate Installed on the Circuit Protector

NC98-LK1 Padlock Attachment

Rail

Minimum operating current is calculated from the following formula: (Minimum operating current) $=($ Rated current $) \times($ Correction factor by installation angle) \times (Reference minimum tripping current rate)

DIN Rails

[Installation on DIN Rail]

1. Fasten the DIN rail securely.
2. With the latch facing downward, install the NC1V circuit protector on the DIN rail as shown below.
[Removal from DIN Rail]
Using a flat screwdriver, pull the latch on the circuit protector to remove from the DIN rail.

Applicable Wire and Crimp Terminal

Terminal	Terminal Screw	Connectable Wire Size (mm^{2})	Applicable Crimping Terminal	Tightening Torque ($\mathrm{N} \cdot \mathrm{m}$)
	Spring-up, fingersafe, slotted Phillips screw with square washer (up to 20A)	0.25 to 1.65	R1.25-4	1 to 1.4
		1.04 to 2.63	R2-4	
		2.63 to 6.64	R5.5-4	
	Spring-up fingersafe terminal (25A and 30A)	0.25 to 1.65	R1.25-5	1.8 to 2.2
		1.04 to 2.63	R2-5	
		2.63 to 6.64	R5.5-5	
	Slotted Phillips screw with square washer	0.25 to 1.65	R1.25-3.5	0.7 to 0.9
		1.04 to 2.63	R2-3.5	

- For wiring the main circuit terminal, use the applicable crimp terminals and tighten to the recommended tightening torque.
- When using the NC1V circuit protector as CSA-certified product, use with CSAcertified crimp terminal.
- When using the NC1V circuit protector as UL-listed product, use with UL-listed crimp terminal.

Panel Mounting Screw (not supplied)

Screw Size	Tightening Torque	Shape
M4	0.8 to $1.0 \mathrm{~N} \cdot \mathrm{~m}$	Spring Washer Plain Washer

Product Markings (Example: NC1V-1111-30AA)

Installation of Auxiliary/Alarm Terminal Cover
After wiring the terminals, install the terminal cover by aligning the terminal cover with the circuit protector as shown below.

Installing Auxiliary/Alarm Terminal Cover

Connect the terminal before installing the terminal cover.
Installing
Attach the latch on TOP side and install the terminal cover as shown below.

Installing NC9Z-MA Panel Mounting Brackets

1. Insert the wiring clip into the terminal of the circuit protector, and tighten.

- Tightening torque to the main circuit terminal
- 20A max. (M4): 1 to $1.4 \mathrm{~N} \cdot \mathrm{~m}$
-25A, 30A (M5): 1.8 to $2.2 \mathrm{~N} \cdot \mathrm{~m}$

2. Insert the panel mounting bracket to the circuit protector.
3. Install the rear of the panel mounting bracket into the DIN rail recess on the circuit protector and push in the clamp.

Note: NC1V circuit protectors with auxiliary/alarm contacts cannot be used with mounting brackets.

Installing the NC98-PW1 Marking Plate

Available for 2-pole circuit protectors only.
For use on 1-pole circuit protectors, break the marking plate into two halves.

Marking Range

Installing the NC98-LK1 Padlock Attachment
(1) Pull down the retractable actuator, and install the padlock attachment on the circuit protector.
1-pole: Insert the pin into the holes under the retractable actuator.
2- or 3-pole: Insert the pin into the holes in the center of the circuit protector.

Recommended Padlock

Manufacturer	Part No.
Alpha	$1000-25$
Master Lock	4120

Safety Precautions

- When using the padlock, do not use the NC1V circuit protector where it is subject to vibration or shock, otherwise failure or damage may result.
- Do not apply a force of more than 50 N on the retractable actuator, otherwise the actuator will be damaged.
- When using three or more 1-pole NC1V circuit protectors adjacently, facilitate installing the padlock attachment by providing a clearance of 6 mm minimum between the protectors, or by using the tweezers or flat screwdriver.

