Interlock Switches with Solenoid
HS5L

Compact design with 2- and 4-contacts

- See website for details on approvals and standards.
- KOHSA (S mark) approved only on some models.

Additional Marking to indicate Locking Monitoring
This new international marking for lock monitoring is described in clause 9.2.1 of ISO14119 and is used to satisfy the requirements shown below.
5.7.1 General requirements
5.7.2.2 Locking monitoring

The lock monitor circuit (contacts) with this marking can monitor both the status of protective door and locking function. (locking monitor contact [circuits] opens when the protective door is closed and locked)
Both spring lock and solenoid lock models of HS5L have marking for lock monitoring. Note that solenoid lock model can be used in applications where lock for safety purpose is found unnecessary after a risk assessment, e.g. locking is needed for purposes such as in production process.

Compact Design

Size is reduced by 13% from conventional models.*
Mounts on small doors and aluminum frames of machines.
Compact design with 2- and 4-contacts reduce installation space. Greater flexibility in machine design.

Compact with powerful 1400N locking strength
The size is greatly reduced while achieving the same 1400N (Fzh) locking strength as the conventional HS5E series. (GS-ET-19)

Gold-plated contacts suitable for small loads. Rear unlocking button
Door lock can be unlocked inside the barrier by a worker left inside a hazardous area.

The head orientation can be rotated, allowing 8 different entries. Angle Adjustable Actuator (vertical/horizontal) with Plate

A new addition to angle adjustable actuator. Retention force of 1400 N .

Spring loaded actuator

IDEC patented spring loaded actuator locks the door safely when the door bounces. When the actuator is fully inserted (door closed completely), the door can tolerate a space of up to 16 mm .

* Accessory exclusive for HS5L.

Spring clamp terminals

Spring clamp terminals offer excellent vibration resistance, preventing wires from loosening. No need for additional tightening.

Two-conduit Model

Cable can be connected to the right, left, or bottom (for straight cable orientation) of the terminal cover. Possible to use long marking tubes with the wiring cables.

Left cable orientation

Energy saving!
Solenoid energy consumption: 200 mA Reduced by 25% from conventional HS5E series.

Head Removal Detection Circuitry

Head removal detection circuitry is employed in the HS5L. With this innovative function, the monitor circuit (41-42) turns off when the head is removed from the switch, such as when removing the head to change the head direction (applicable with the HS5L spring lock models). For example, for circuit codes: VB, VD and DD, which have two or more lock monitor circuits installed, removing the head results in disparity (41-42: OFF, 51-52: ON). This disparity is detected by the head removal detection function.

- HS5L-VD44M-G (Lock monitor circuit)

Note: Head removal detection function is not a direct opening action mechanism.

Spring lock and Solenoid lock models available

Spring Lock

- Automatically locks the actuator without power applied to the solenoid.
- After the machine stops, unlocking is completed by the solenoid, providing high safety features.
- Manual unlocking is possible in the event of power failure or maintenance using a manual unlocking key.
- Head removal detection circuitry (spring lock models only).

Solenoid Lock

- The actuator is locked when energized.
- The actuator is unlocked when de-energized.
- Flexible locking function can be achieved, for an application where locking is not required and sudden stopping of a machine must be prevented.

HS5L Interlock Switches with Solenoid (2-Contact)

Two-contact solenoid interlock switches ideal for use on applications such as food machines and

Ratings
Contact Ratings

Rated Insulation Voltage (Ui)			250V(between LED, solenoid and grounding: 30V)		
Rated Current (Ith)			2.5A		
Rated Voltage (Ue)			30 V	125 V	250 V
	AC	Resistive Load (AC-12)	-	2.5A	1.5A
		Inductive Load (AC-15)	-	1.5A	0.75A
	DC	Resistive Load (DC-12)	2.5A	1.1A	0.55A
		Inductive Load (DC-13)	2.3A	0.55A	0.27A

- Minimum applicable load (reference): 3V AC/DC, 5mA
(Applicable range may vary with operating conditions and load types.)
* UL, c-UL rating: Pilot Duty AC 0.75A/250V

Pilot Duty DC 1.0A/30V
$\begin{array}{llll}\text { TÜV rating: } & \mathrm{AC}-15 & 0.75 \mathrm{~A} / 250 \mathrm{~V}, \mathrm{DC}-13 & 2.3 \mathrm{~A} / 30 \mathrm{~V} \\ \text { CCC rating: } & \mathrm{AC}-15 & 0.75 \mathrm{~A} / 250 \mathrm{~V}, \mathrm{DC}-13 & 2.3 \mathrm{~A} / 30 \mathrm{~V}\end{array}$
KOSHA rating: AC-15 $0.75 \mathrm{~A} / 250 \mathrm{~V}, \mathrm{DC}-13 \quad 1.0 \mathrm{~A} / 30 \mathrm{~V}$ (*1)

Solenoid

Locking Mechanism	Spring Lock
Rated Voltage	100% duty cycle 24 V DC
Rated Current	200 mA (initial value)
Coil Resistance	120Ω (at $20^{\circ} \mathrm{C}$)
Pickup Voltage	Rated voltage $\times 85 \%$ max. (at $20^{\circ} \mathrm{C}$)
Dropout Voltage	Rated voltage $\times 10 \%$ min. (at $20^{\circ} \mathrm{C}$)
Maximum Continuous Applicable Voltage	Rated voltage $\times 110 \%$
Maximum Continuous Applicable Time	Continuous
Insulation Class	Class F

Indicator

Rated Voltage	24 V DC
Rated Current	10 mA
Light Source	LED
Illumination Color	G (Green)

Tri|mADA

HS5L Interlock Switches with Solenoid (2-Contact)

HS5L Interlock Switches with Solenoid (2-Contact)

2-Contact			Gland Port Size		Package Quantity: 1	
Circuit Code	Contact Configuration			Spring lock	Solenoid	
			Part No.			
XD				M20	HS5L-XD44M-G	HS5L-XD7Y4M-G
XF	Door Monitor Circuit: 2NC Monitor Circuit: $\Theta 11$ 12 Monitor Circuit: \qquad		-		HS5L-XF7Y4M-G	
XG	Door Monitor Circuit: 1NC,1NO Monitor Circuit:	10	-		HS5L-XG7Y4M-G	
XH	Monitor Circuit: Monitor Circuit:	Lock Monitor Circuit: 2NC $\begin{array}{c:ccc} 41 & 42 & \boxed{l l} \text { (Note) } \\ & 52 & \boxed{l l} \text { (Note) } \end{array}$	HS5L-XH44M-G		HS5L-XH7Y4M-G	
XH			HS5L-XH44LM-G (Rear Unlocking Button Model)			

- The contact configuration shows the status when the actuator is inserted and the switch is locked.

Note: Both spring lock and solenoid lock models of HS5L have

- Actuators are not supplied with the interlock switch and must be ordered separately. marking for lock monitoring. Note that solenoid lock model
- Contact us for details of two-conduit model. (Part No: HS5L- $\square \square \square \square$ SM-G) can be used in applications where lock for safety purpose is found unnecessary after a risk assessment, e.g. locking is needed for purposes such as in production process.

Circuit Diagrams and Operating Characteristics
Spring Lock

Interlock
Switches
Non-contact Interlock Switches
Safety Laser Scanners
Safety Light Curtains
Safety Modules
HS6B
HS6E
HS5D
HS5L
HS1L
Actuators for HS1/HS5/HS6 Actuators/ Padlock Hasp

- The contact configuration shows the status when the actuator is inserted and the switch is locked.
- Monitor Circuit: Sends monitoring signals of protective door open/closed status door monitor) or protective door lock/unlock status (lock monitor).
${ }^{*}$) Actuator can be unlocked manually for confirming the door movement before wiring and energizing, and also for emergency situation such as power failure.
*2) When an operator is confined within a dangerous zone, the actuator can be unlocked manually by pressing the rear unlocking button (rear unlocking button model).

HS5L Interlock Switch with Solenoid (4-Contact)

Four-contact solenoid interlock switches ideal for use on limited mounting spaces
such as small doors.

Specifications

	EN ISO14119 GS-ET-19 (TÜV approval) EN60947-5-1 (TüV approval) UL508 (UL listed) Applicable Standards GSA C22.2 No. 14 (c-UL listed) KB14048.5 (CCC approval) KS CIEC60947-5-1/S1-G-1/22-E-4 (KOSHA approva) (41)
	IEC60204-1/EN60204-1 (Applicable standards for use)
Type 2 low level coded interlocking device (EN/SO14119)	

${ }^{*}$) Not applicable for all models. Visit IDEC's website for details.
*2) See E-043 regarding actuator retention force.

APEM
Switches \& Pilot Lights

Control Boxes
Emergency Stop Switches Enabling Switches

Ratings
Contact Ratings

Rated Insulation Voltage (Ui)			250V (between LED, solenoid and grounding: 30V)		
Rated Current (Ith)			2.5A		
Rated Voltage (Ue)			30 V	125 V	250 V
	AC	Resistive Load (AC-12)	-	2.5A	1.5A
		Inductive Load (AC-15)	-	1.5A	0.75A
	DC	Resistive Load (DC-12)	2.5A	1.1A	0.55A
		Inductive Load (DC-13)	2.3A	0.55A	0.27A

- Minimum applicable load (reference): 3V AC/DC, 5mA
(Applicable range may vary with operating conditions and load types.)
* UL, c-UL rating: Pilot Duty AC 0.75A/250V,

Pilot Duty DC 1.0A/30V
TÜV rating: $\quad \mathrm{AC}-15 \quad 0.75 \mathrm{~A} / 250 \mathrm{~V}, \mathrm{DC}-13 \quad 2.3 \mathrm{~A} / 30 \mathrm{~V}$
CCC rating: $\quad A C-15 \quad 0.75 \mathrm{~A} / 250 \mathrm{~V}, \mathrm{DC}-13 \quad 2.3 \mathrm{~A} / 30 \mathrm{~V}$
KOSHA rating: AC-15 $0.75 \mathrm{~A} / 250 \mathrm{~V}, \mathrm{DC}-13 \quad 1.0 \mathrm{~A} / 30 \mathrm{~V}$ (*1)

Solenoid

Locking Mechanism	Spring Lock
Rated Voltage	100% duty cycle 24 V DC
Rated Current	200 mA (initial value)
Coil Resistance	120Ω (at $20^{\circ} \mathrm{C}$)
Pickup Voltage	Rated voltage $\times 85 \%$ max. (at $20^{\circ} \mathrm{C}$)
Dropout Voltage	Rated voltage $\times 10 \%$ min. (at $20^{\circ} \mathrm{C}$)
Maximum Continuous Applicable Voltage	Rated voltage $\times 110 \%$
Maximum Continuous Applicable Time	Continuous
Insulation Class	Class F

Indicator

Rated Voltage	24 V DC
Rated Current	10 mA
Light Source	LED
Illumination Color	G (Green)

Interlock
Switches
Non-contact Interlock Switches
Safety Laser Scanners
Safety Light Curtains
Safety Modules
HS6B
HS6E
HS5D
HS5L
HS1L
Actuators for HS1/HS5/HS6
Actuators/ Padlock Hasp

Interlock

Non-contact
Interlock Switches
Safety Las
Scanners
Safety Light
Safety Modules

HS6B
HS6E
HS5D

Actuators for
Actuators/ Padlock Hasp

HS5L Interlock Switch with Solenoid (4-Contact)

HS5L Interlock Switches with Solenoid (4-Contact)
4-Contact (Spring Lock/Solenoid Lock)

- The contact configuration shows the status when the actuator is inserted and the switch is locked.
- Actuators are not supplied with the interlock switch and must be ordered separately.
- For safety circuit input, connect to the monitor circuit with marking
- Contact us for details of two-conduit model. (Part No: HS5L-DCDOSM-G)

Note: Both spring lock and solenoid lock models of HS5L have marking for lock monitoring. Note that solenoid lock model can be used in applications where lock for safety purpose is found unnecessary after a risk assessment, e.g. locking is needed for purposes such as in production process.

HS5L Interlock Switch with Solenoid (4-Contact)

4-Contact/Rear Unlocking Button (Spring Lock)
Package Quantity: 1

Circuit Code	Contact Configuration		Spring lock
			Part No.
VA		M20	HS5L-VA44LM-G
VB	Door Monitor Circuit: 1NC, 1NO Lock Monitor Circuit: 2NC Monitor Circuit: 11 12 Monitor Circuit: Monitor Circuit: 23 24 41		HS5L-VB44LM-G
VC			HS5L-VC44LM-G
VD	Door Monitor Circuit: 2NC Lock Monitor Circuit: 2NC Monitor Circuit: Θ Monitor Circuit: Θ Monitor Circuit: $\frac{11}{21}$ $\frac{12}{22}$ 		$\begin{gathered} \text { HS5L-VD44LM-G } \\ \hline \begin{array}{c} \text { HS5L-VD44LSM-G } \\ \text { (two-conduit model) } \end{array} \end{gathered}$

- The contact configuration shows the status when the actuator is inserted and the switch is locked.
- Actuators are not supplied with the interlock switch and must be ordered separately.

4-Contact/Dual Safety Circuit (Spring Lock)
APEM

Switches \&

Pilot Lights
Control Boxes
Emergency
Stop Switches
Enabling
Switches
Safety Products
Explosion Proof
Terminal Blocks
Relays \& Sockets
Circuit
Protectors
Power Supplies

LED Illumination

Controllers
Operator
Interfaces

Circuit Code	Contact Configuration			Gland Port Size	Spring lock	
				Part No.		
DD	$\begin{array}{r} \text { Main Circuit: } 1 \mathrm{NC}+1 \mathrm{NC} \\ 1 \mathrm{NC}+1 \mathrm{NC} \end{array}$		$\begin{aligned} & \text { Lock Monitor } \\ & \text { (Solenoid OFF) } \end{aligned}$		M20	HS5L-DD44M-G
		$\begin{aligned} & \mathrm{t}: \Theta \stackrel{11+12}{\mathrm{t}:} \stackrel{21+22}{21+22} \end{aligned}$	$\begin{array}{l:lll} 41 & 42 & \boxed{ } 1 \\ \hdashline 51 & 52 \\ \hline \square \end{array}$	HS5L-DD44SM-G (two-conduit model)		

- The contact configuration shows the status when the actuator is inserted and the switch is locked.
- Actuators are not supplied with the interlock switch and must be ordered separately.

4-Contact/Dual Safety Circuit/Rear Unlocking Button (Spring Lock)
Package Quantity: 1

Circuit Code	Contact Configuration			Gland Port Size	Spring lock	
				Part No.		
DD	$\begin{array}{r} \text { Main Circuit: } 1 \mathrm{NC}+1 \mathrm{NC} \\ 1 \mathrm{NC}+1 \mathrm{NC} \end{array}$		$\begin{aligned} & \text { Lock Monitor } \\ & \text { (Solenoid OFF) } \\ & (+) \quad(-) \end{aligned}$		M20	HS5L-DD44LM-G
		$\begin{aligned} & \mathrm{t}: \Theta \frac{11+12}{21+22} \\ & \mathrm{t}: \Theta \frac{21+1}{2} \end{aligned}$	$\begin{array}{l:l\|l} 41 & 42 \\ \hdashline 51 & 52 \\ \hline \end{array}$	HS5L-DD44LSM-G (two-conduit model)		

- The contact configuration shows the status when the actuator is inserted and the switch is locked.
- Actuators are not supplied with the interlock switch and must be ordered separately.

HS5L Interlock Switch with Solenoid (4-Contact)

Circuit Diagrams and Operating Characteristics
4-Contact/Rear Unlocking Button (Spring Lock)

- The contact configuration shows the status when the actuator is inserted and the switch is locked.
- Monitor Circuit: Sends monitoring signals of protective door open/closed status (door monitor) or protective door lock/unlock status (lock monitor).
${ }^{* 1}$) Actuator can be unlocked manually for confirming the door movement before wiring and energizing, and also for emergency situation such as power failure.
*2) When an operator is confined within a dangerous zone, the actuator can be unlocked manually by pressing the rear unlocking button (rear unlocking button model).

HS5L Interlock Switch with Solenoid (4-Contact)

Circuit Diagrams and Operating Characteristics
4-Contact (Solenoid Lock)

Interlock Switch Status			Status 1	Status 2	Status 3	Status 4
			Door Closed Machine ready to operate Solenoid energize Solenoid energized	Door Closed Machine cannot be operated Solenoid de-energized	Door open Machine cannot be operated Solenoid de-energized	Door open Machine cannot be operated Solenoid energized
Door Status						
Circuit Example: HS5L-VA7Y			1			
Door			Closed (locked)	Closed (unlocked)	Open	Open
		$\begin{array}{\|c} \hline \begin{array}{c} \text { (donitor C Cirscuit } \\ 11-12 e d) \end{array} \\ \hline \end{array}$				
		$\underset{\substack{\text { Monitor Circcuit } \\ \text { (door open) } \\ 23-24}}{\text { He }}$				
		$\begin{array}{\|c\|} \hline \text { Monitor Circuit } \\ \text { (locked) } \\ 41-42 \end{array}$				
		$\begin{aligned} & \text { Monitor Circuit } \\ & \text { (unlocked) } \\ & 53-54 \end{aligned}$				
		$\begin{array}{\|c} \text { Monitor Circuit } \\ \text { (door Closedi) } \\ 11-12 \end{array}$				
		$\underset{\substack{\text { Monitor Cirecuit } \\ \text { (door open) } \\ 23-24}}{\text { and }}$				
		Monitor Circuit (Iocked) (41 41-42				
		$\begin{array}{\|c\|} \hline \text { Monitor Circuit } \\ \text { (locked) } \\ 51-52 \end{array}$				
		$\begin{gathered} \text { Monitor Circuit } \\ \substack{\text { (door Closesed) } \\ 11-12} \end{gathered}$				
		$\begin{aligned} & \text { Monitor Circuit } \\ & \text { (door closed) } \end{aligned}$ $21-22$				
		$\underset{\substack{\text { Monitor Circcuit } \\ \text { (tocked) } \\ 41-42}}{\text { and }}$				
		Monitor Circuit (unlocked)				
		$\begin{aligned} & \text { Monitor Circuit } \\ & \text { (door closed) } \\ & 11-12 \end{aligned}$				
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (door closed) } \\ 21-22 \\ 21-2 i \end{gathered}$				
		$\begin{array}{\|l\|} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (locked) } \\ 41-42 \end{array} \\ \hline \end{array}$				
		$\underset{\substack{\text { Monitor Circcuit } \\ \text { (locked) } \\ 51-52}}{ }$				
Solenoid Power A1-A2 (all models)			ON (energized)	OFF (de-energized)	OFF (de-energized)	ON (energized) (*2)

Unlocking using Manual Unlock Key
Door Closed Machine cannot be operated

APEM

Switches \&

 Pilot Lights Control BoxesEmergency Stop Switches Enabling
Switches
Safety Products
Explosion Proof
Terminal Blocks
Relays \& Sockets
Circuit
Protectors
Power Supplies
LED Illumination
Controllers
Operator
Interfaces
Sensors
AUTO-ID

\section*{Interlock
 | Inieriock |
| :--- |
| Swithes |
| Non-contact |}

Non-contact
Interlock Switches
Safety Laser
Scanners
Safety Ligh
Safety Modules

- The contact configuration shows the status when the actuator is inserted and the switch is locked.
- Monitor Circuit: Sends monitoring signals of protective door open/closed status (door monitor) or protective door lock/unlock status (lock monitor).
*1) Do not attempt manual unlocking when the solenoid is energized.
${ }^{*} 2$) Do not energize the solenoid for a long time while the door is open or when the door is unlocked manually.
*3) Both spring lock and solenoid lock models of HS5L have marking for lock monitoring. Note that solenoid lock model can be used in applications where lock for safety purpose is found unnecessary after a risk assessment, e.g. locking is needed for purposes such as in production process.
Operating Characteristics (Reference)

- The operation characteristics shown in the chart above are for HS9Z-A51. For other actuators, add 1.3mm.
- See E-050 for HS9Z-BA5.
- The operation characteristics show the contact status when the actuator enters the entry slot of an interlock switch.

HS5L Interlock Switch with Solenoid (4-Contact)

Circuit Diagrams and Operating Characteristics
4-Contact (Solenoid Lock)

Interlock Switch Status			Status 1	Status 2	Status 3	Status 4	Unlocking using Manual Unlock Key
			Door Closed Machine ready to operate Solenoid energized	Door Closed Machine cannot be operated Solenoid de-energized	Door open Machine cannot be operated Solenoid de-energized	Door open Machine cannot be operated Solenoid energized	Door Closed Machine cannot be operated Solenoid de-energized \rightarrow energized
Door Status							
Circuit Example: HS5L-VA7Y							
Door			Closed (locked)	Closed (unlocked)	Open	Open	Closed (unlocked)
	$\left.\left\lvert\, \begin{array}{cc\|}\hline \text { HS5L-VF7Y } \\ \text { Door Monitor } \\ \text { (Actuator inserted) }\end{array}\right.\right)$	$\begin{aligned} & \hline \text { Monitor Circuit } \\ & \text { (door closed) } \\ & 11-12 \end{aligned}$					
		$\begin{aligned} & \text { Monitor Circuit } \\ & \text { (door closed) } \\ & 21-22 \end{aligned}$					
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (door closed) } \\ 31-32 \\ \hline \end{gathered}$					
		$\begin{gathered} \hline \text { Monitor Circuit } \\ \text { (locked) } \\ 41-42 \end{gathered}$					
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (door closed) } \\ 11-12 \\ \hline \end{gathered}$					
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (door closed) } \\ 21-22 \\ \hline \end{gathered}$					
		$\begin{aligned} & \hline \text { Monitor Circuit } \\ & \text { (door open) } \\ & 33-34 \end{aligned}$					
		$\begin{gathered} \hline \text { Monitor Circuit } \\ \text { (locked) } \\ 41-42 \\ \hline \end{gathered}$					
	HS5L-VJ7Y Monitor Circuit $\Theta 11$ 12 41 42 Montor Cricuit Monito cricuit	$\begin{aligned} & \text { Monitor Circuit } \\ & \text { (door closed) } \\ & 11-12 \end{aligned}$					
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (locked) } \\ 41-42 \\ \hline \end{gathered}$					
		$\begin{gathered} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (locked) } \\ 51-52 \\ \hline \end{array}{ }^{2} \text {. } \\ \hline \end{gathered}$					
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (unlocked) } \\ 63-64 \\ \hline \end{gathered}$					
Solenoid Power A1-A2 (all models)			ON (energized)	OFF (de-energized)	OFF (de-energized)	ON (energized) (*2)	$\begin{aligned} & \text { OFF (de-energized) } \xrightarrow{\left({ }^{(1)}\right)\left({ }^{* 2}\right)} \\ & \text { ON (energized) } \end{aligned}$

- The contact configuration shows the status when the actuator is inserted and the switch is locked.
- Monitor Circuit: Sends monitoring signals of protective door open/closed status (door monitor) or protective door lock/unlock status (lock monitor).
*1) Do not attempt manual unlocking when the solenoid is energized.
${ }^{*}$ 2) Do not energize the solenoid for a long time while the door is open or when the door is unlocked manually.
*3) Both spring lock and solenoid lock models of HS5L have marking for lock monitoring. Note that solenoid lock model can be used in applications where lock for safety purpose is found unnecessary after a risk assessment, e.g. locking is needed for purposes such as in production process.
Operating Characteristics (Reference)

- The operation characteristics shown in the chart above are for HS9Z-A51. For other actuators, add 1.3 mm .
- See E-050 for HS9Z-BA5.
- The operation characteristics show the contact status when the actuator enters the entry slot of an interlock switch.

HS5L Interlock Switch with Solenoid (4-Contact)

AUTO-ID

- The contact configuration shows the status when the actuator is inserted and the switch is locked.
- Main Circuit: Connected to the control circuit of machine drive part, sending interlock signals of the protective door
- For safety circuit input, connect to the monitor circuit.
*1) Actuator can be unlocked manually for confirming the door movement before wiring and energizing, and also for emergency situation such as power failure.
*2) When an operator is confined within a dangerous zone, the actuator can be unlocked manually by pressing the rear unlocking button. (rear unlocking button model)
Operating Characteristics (Reference)

Interlock Switches Non-contact Interlock Switches Safety Laser Scanners Safety Light Curtains Safety Modules HS6B HS6E HS5D HS5L HS1L Actuators for HS1/HS5/HS6 Actuators/ Padlock Hasp

HS5L Interlock Switches with Solenoid

Actuators for HS5 Series Interlock Switches
Actuator

Description	Part No.	Package Quantity	Remarks
Straight	HS9Z-A51	1	Actuator retention force is Fzh=1400N.
Straight with rubber bushings	HS9Z-A51A		
Right-angle	HS9Z-A52		
Right-angle with tubber bushings	HS9Z-A52A		
Angle adjustable (vertical)	HS9Z-A53		
Angle adjustable (vertical/horizontal) with plate	HS9Z-A55S		
Angle adjustable (vertical/horizontal)	HS9Z-A55		Actuator retention force is $\mathrm{Fz}=500 \mathrm{~N}$. When a retention force of 500 N or more is required, use HS9Z-A55S.

- See E-064 for details on actuators.

Accessories

Safety Products
Explosion Proof
Terminal Blocks
Relays \& Sockets
Circuit Protectors
Power Supplies
LED Illumination
Controllers
Operator Interfaces
Sensors

Description	Part No.	Package Quantity	Remarks
Sliding actuator (*1)	HS9Z-SH5	1	Actuator retention force is Fzh=1400N.
Door handle ${ }^{\text {Hendle unit for right-hand door }}$	HS9Z-DH5RH		Choose according to the required opening side.
actuator Handle unit for left-hand door	HS9Z-DH5LH		Choose according to the required opening side.
(*1) Switch cover unit	HS9Z-DH5C		
Slide handle actuator	HS9Z-EH5L		Used for installing the interlock switch inside.
Spring loaded actuator (*1) (*2)	HS9Z-BA5		Actuator retention force is Fzh=1400N.
Plug actuator (*1)	HS9Z-A5P		
Padlock hasp (*1)	HS9Z-PH5		
Mounting plate (*3)	HS9Z-SP51		Used when installing the interlock switch on the aluminum frame.
Rear Unlocking Button Kit (*4)	HS9Z-FL53		Panel Thickness (*5) (X): $23<\mathrm{X} \leq 33$
	HS9Z-FL54		Panel Thickness (*5) (X): $33<x \leq 43$
	HS9Z-FL55		Panel Thickness (*5) (X): $43<\mathrm{X} \leq 53$

*1) See E-064 to E-090 for details on accessories.
*2) HS9Z-BA5 can only be used for HS5L interlock switches. Also, HS9Z-BA5 can be used only on slide doors. Do not use on hinge doors.
*3) When mounting HS5L- $\square \square \square \mathrm{L}$ (rear unlocking button model) using a mounting plate, provide mounting holes on the mounting plate as shown below and user Rear Unlocking Button Kit (HS9Z-FL5 \square).
*4) HS5L interlock switch rear unlocking button kit (When mounting HS5L- \square L directly).
*5) Thickness of the frame or panel where the HS5L is mounted.

- Follow the instructions on catalog or instruction sheet for proper use of accessories.

HS6B
HS6E
HS5D
HS5L
HS1L
Actuators for
HS1/HS5/HS6
Actuators/
Padlock Hasp

Interlock Switch Dimensions and Mounting Hole Layouts

HS5L- $\square \square 4$ M-G

When using Horizontal Mounting/Straight Actuator (HS9Z-A51)

Mounting Hole Layout

Accessories
(supplied)

HS5L-■ $\square 4 S M-G$ (two-conduit model)
When using Horizontal Mounting/Straight Actuator (HS9Z-A51) Left cable orientation (factory setting)

*1) Actuator mounting reference position

Emergency

Stop Switches
Enabling

Switches
Safety Products
Explosion Proof
Terminal Blocks
Relays \& Sockets
Circuit
Protectors
Power Supplies

LED Illumination
Controllers

Operator

Interfaces
Sensors
AUTO-ID

Interlock

Switches
Non-contact
Interlock Switches
Safety Laser
Scanners
Scannery Light

Safety Light
Curtains

Safety Modules

HS6B
HS6E
HS5D

Dimensions

Rear Unlocking Button Kit (HS92-FL5D)

HS5L Interlock Switches with Solenoid

Safety Precautions

- In order to avoid electric shock or fire, turn power off before installation, removal, wiring, maintenance, or inspection of the interlock switch.
- If relays are used in the circuit between the interlock switch and the load, use only safety relays, since welded or sticking contacts of standard relays may invalidate the functions of the interlock switch. Perform a risk assessment and make a safety circuit which satisfies the requirements of the safety category.
- Do not place a PLC in the circuit between the interlock switch and the load. Safety security can be endangered in the event of a malfunction of the PLC.
- Do not disassemble or modify the interlock switch, otherwise a malfunction or an accident may occur.
- Do not install the actuator in a location where a human body may come into contact. Otherwise injury may occur.
- Solenoid lock is locked when energized, and unlocked when deenergized. When energization is interrupted due to wire disconnection or other failures, the interlock switch may be unlocked causing possible danger to the operators. Solenoid lock must not be used in applications where locking is strictly required for safety. Perform a risk assessment and determine whether solenoid lock is appropriate.
- When changing the head orientation, disconnect the cable and turn the manual unlock to the UNLOCK position in advance. If the head orientation is changed when the cable is connected and the manual unlock is in the LOCK position, machines may start to operate, causing danger to the operators.

Instructions

- Do not use the interlock switch as a door stop. Install a mechanical door stop at the end of the door to protect the interlock switch against excessive force.
- Do not apply excessive shock to the interlock switch when opening or closing the door. A shock to the interlock switch exceeding $1,000 \mathrm{~m} / \mathrm{s}^{2}$ may cause damage to the interlock switch.
- Prevent foreign objects such as dust and liquids from entering the interlock switch while connecting a conduit or wiring.
- Plug the unused actuator entry slot using the slot plug supplied with the interlock switch.
- Do not store the interlock switches in a dusty, humid, or organic-gas atmosphere, or in an area subjected to direct sunlight.
- Use proprietary actuators only. When other actuators are used, the interlock switch may be damaged.
- The locking strength is rated at 1400 N . Do not apply a load higher than the rated value. When a higher load is expected, provide an additional system consisting of another interlock switch without lock (such as the HS5D interlock switch) or a sensor to detect door opening and stop the machine.
- Regardless of door types, do not use the interlock switch as a door lock. Install a separate lock using a latch or other measures.
- While the solenoid is energized, the switch temperature rises approximately $40^{\circ} \mathrm{C}$ above the ambient temperature (to approximately $95^{\circ} \mathrm{C}$ while the ambient temperature is $55^{\circ} \mathrm{C}$. To prevent burns, avoid touching. If cables come into contact with the switch, use heatresistant cables.
- Although the HS9Z-A51A/A52A actuators alleviate shock when the actuator enters a slot in the interlock switch, make sure that excessive shock is not applied. If the Rubber Bushings become deformed or cracked, replace with new ones.
- HS5L interlock switches are Type 2 low level coded interlocking devices (IS014119). According to ISO14119, the following is required to minimize defeat when installing and constructing systems:

1. Prevent dismantling or de-positioning of the elements of the interlocking device by use of non-detachable fixing (e.g. welding, gluing, one-way screws, riveting). However, use of non-detachable fixing can be an inappropriate solution in cases where a failure of the interlocking device during lifetime of the machinery can be expected and a fast change is necessary. In this case measures mentioned below, should be used to provide the required level of risk reduction.
2. Apply at least one out of the four measures below.
(1) Mounting out of reach.
(2) Physical obstruction or shielding.
(3) Mounting in hidden position.
(4) Integration of defeat monitoring by means of status monitoring/cyclic testing.

Instructions

Minimum Radius of Hinged Door
When using the interlock switch for a hinged door, refer to the minimum radius of doors shown below. Especially for doors with a small turning radius, use vertical/horizontal movable actuators (HS9Z-A53/A55).
Note: Because deviation or dislocation of a hinged door may occur in actual applications, make sure of the correct operation by installing the actual machine first before use.

HS9Z-A52 Actuator

When the center of the hinged door is used as the reference for the interlock switch contact surface:

When the center of the hinged door is used as the reference for the actuator mounting surface:

HS9Z-A52A Actuator (with Rubber Bushings)
When the center of the hinged door is used as the reference for the interlock switch contact surface:

When the center of the hinged door is used as the reference for the actuator mounting surface:

Actuator Angle Adjustment (vertical/horizontal)

- Using the angle adjustment screw, the actuator angle can be adjusted (refer to the dimensional drawing on E-064 to E-070). Adjustable angle: 0 to 20°
- The larger the adjusted angle of the actuator, the smaller the applicable radius of the door opening. After installing the actuator, open the door. Then adjust the actuator so that its edge can be inserted properly into the actuator entry slot of the interlock switch.
- After adjusting the actuator angle, apply Loctite to the adjustment screw so that the screw will not move.

When using the HS9Z-A55S Angle Adjustable
(vertical/horizontal) Actuator (w/Plate)

- When the center of the hinged door is used as the reference for the interlock switch contact surface: 50 mm
- When the center of the hinged door is used as the reference for the actuator mounting surface: 70 mm
- The HS9Z-A55S angle adjustable actuator is made of glass-reinforced PA66 (66 nylon) and the angle adjustment screw and plate are made of stainless steel. When using the screw locking agent, make sure that it is compatible with the base material.
When the center of the hinged door is used as the reference for the interlock switch contact surface:

When the center of the hinged door is used as the reference for the actuator mounting surface:

When using the HS9Z-A55 Angle Adjustable

(vertical/horizontal) Actuator

- When the center of the hinged door is used as the reference for the interlock switch contact surface: 50 mm
- When the center of the hinged door is used as the reference for the actuator mounting surface: 70 mm
- The HS9Z-A55 angle adjustable actuator is made of glass-reinforced PA66
(66 nylon) and the angle adjustment screw is stainless steel. When using the screw locking agent, make sure that it is compatible with the base material.
When the center of the hinged door is used as the reference for the interlock
switch contact surface:

When the center of the hinged door is used as the reference for the actuator mounting surface:
Horizontal Swing

When using the HS9Z-A53 Angle Adjustable (vertical) Actuator

- When the center of the hinged door is used as the reference for the interlock switch contact surface: 50 mm
- When the center of the hinged door is used as the reference for the actuator mounting surface: 80 mm
- Angle adjustment screw recommended tightening torque: $0.8 \mathrm{~N} \cdot \mathrm{~m}$.

APEM

Switches \&

Pilot Lights
Control Boxes
Emergency Stop Switches
Enabling
Switches
Safety Products
Explosion Proof

Terminal Blocks

Relays \& Sockets
Circuit
Protectors
Power Supplies

LED Illumination

Controllers
Operator
Interfaces
Sensors
AUTO-ID

Interlock Switches

Non-contact
Interlock Switches
Safety Laser
Scanners
Safety Light
Curtains
Safety Modules

HS6B
HS6E
HS5D

HS1L
Actuators for
HS1/HS5/HS6
Actuators/
Actuators/
Padlock Hasp

HS5L Interlock Switches with Solenoid

Instructions

Installing the Head

Do not use plastic and metallic heads of HS5D interlock switches on the HS5L.
Be sure to use HS5L metallic heads.

* The metal heads of the HS5D and HS5L look similar. When using these interlock switches adjacently, ensure that the heads are not interchanged.

* The metal head can be distinguished easily by the color of the plastic.

Rotating the Head

The head can be rotated by removing the four screws from the corners of the head and reinstalling the head in the desired orientation. However, when changing the mounting direction of the head after wiring, turn the manual lock release to the "UNLOCK" position using the enclosed manual lock release key first. When reinstalling the head, make sure that no foreign object enters the interlock switch. Tighten the screws tightly, without leaving a space between the head and body, otherwise the interlock switch may malfunction.
(Recommended tightening torque: 0.9 to $1.1 \mathrm{~N} \cdot \mathrm{~m}$)
LED Illumination

Controllers
Operator Interfaces
Sensors
AUTO-ID

Interlock
Switches
Non-contact
Interlock Switches
Safety Scanners
Safety Light Curtains
Safety Modules

Head Removal Detection Function

- Solenoid locks interlock switches are not equipped with the head removal detection function.
- The head removal detection function is available only on spring lock interlock switches with circuits VB, VD, and DD having two or more lock monitor circuits. Removing the head will result in disparity (41-42: OFF, 51-52: ON). Note that this function cannot be detected with other models.
- Only the lock monitor circuit 41-42 turns off (open) when the head is removed, such as when the head is rotated. The other monitor circuit 51-52 turns 0 N (close). Be sure to connect the lock monitor circuit (41-42) to a safety circuit.

Spring Loaded Actuator

- When using the actuator, be careful of protruding ends.
- Regardless of door types, do not use the HS9Z-BA5 actuator as a door lock or a door stop.
- When an operator enters the hazardous zone, take safety measures such as using a HS9Z-PH5 padlock hasp so that the operator is not trapped inside and the machine cannot start by mistake.
- Use the actuator only on sliding doors. Do not use on hinged doors.
- As shown in the figure on the right, do not insert the sliding actuator from below. The actuator may fall out due to shocks.

- The HS9Z-BA5 actuator can only be used for HS5L interlock switches. Do not use the HS9Z-BA5 actuator for other products.
- Do not modify or disassemble the actuator.

Installation (when installation reference is 0.8 mm)

- The actuator protrudes out when the actuator is not inserted (door is open) as shown in 1 . in the drawing.
- The mounting reference position can be set to 0.8 mm when the actuator is fully inserted and the actuator protrudes up to the 0.8 mm line.

1. Removed

Instructions

Adjustment

Adjustment Procedure

1. Make a hole at A or C.
2. Fasten temporarily with screws, and check the actuator position.
3. Make a hole at B and fix the actuator using a screw or a rivet.

- 3.3 mm line

The mounting reference position is where the door is fully closed, and there is a 0.8 mm space between the safety switch and HS9Z-BA5, but can be adjusted up to the 3.3 mm line.
The actuator is most securely locked when the mounting reference position is at the 0.8 mm line. However, adjust between 0.8 to 3.3 mm if the interlock switch is mounted on a door where the space might become smaller.

- Lock limit line

When a door opens by bouncing, if the lock limit line is outside of the edge of the interlock switch, the force of the bounce may be too large so that the door may not lock.

Safety Precautions

- The maximum gap of the door that can be locked is 16 mm . (When mounting reference is a the 0.8 mm line)
- If the safety distance and minimum gap does not satisfy the requirements of IS013857, make the gap smaller by overlapping the doors or by providing sufficient distance from the hazardous source. If the required safety distance cannot be obtained, use the actuator other than spring loaded actuator.
- The operating characteristics may change when the actuator is used with the HS5L. Check the operating characteristics before use.
Characteristic Diagram (Reference)

* Bounce can be tolerated to approximately 16 mm .
[Reference] When using HS9Z-A51A with HS5L interlock switch

Manual Unlocking

Spring lock

The spring lock interlock switch allows manual unlocking of the actuator to precheck proper door movement before wiring or turning power on, as well as for emergency use such as a power failure.

Solenoid lock

The solenoid interlock switch does not unlock even when the solenoid is de-energized. However, the interlock switch can be unlocked manually in emergency cases.

When locking or unlocking the interlock switch manually, turn the key fully using the manual unlock key supplied with the interlock switch as shown above. Using the interlock switch with the key not fully turned (less than 90°) may cause damage to the interlock switch or operation failures (when manually unlocked, the interlock switch will keep the main circuit disconnected and the door unlocked).
Do not apply excessive force to the manual unlock, otherwise the manual unlock will become damaged. Do not leave the manual unlock key attached to the interlock switch during operation. This is dangerous because the interlock switch can always be unlocked while the machine is in operation.

Safety Precautions

Before manually unlocking the interlock switch, make sure that the machine has come to a complete stop. Manual unlocking during operation may unlock the interlock switch before the machine stops, and the function of interlock switch with solenoid is lost.

Installing the Rear Unlocking Button

(HS5L- $\square \mathrm{L}$)

After installing the interlock switch on the panel, place the rear unlocking button (supplied with the switch) on the push rod on the back of the interlock switch, and fasten the button using M3 sems
screw (supplied with the switch).

When installing on a mounting frame
thicker than 6 mm , use the rear unlocking button kit HS9Z-FL5 \square (sold separately).

Safety Precautions

After installing the rear unlocking button, apply Loctite to the screw so that the screw does not become loose. The rod is made of stainless steel, the button is made of glass-reinforced PA66 (66 nylon) and the screw is made of iron. Take the compatibility of the plastic material and Loctite into consideration.

HS5L Interlock Switches with Solenoid

Installing the Rear Unlocking Button Kit

1. Install the connecting rod onto the push rod on the HS5L-DL rear unlocking button interlock switch
2. A pin is attached to the connecting rod. Insert the pin into the hole in the push rod, using pliers.

3. Pull the connecting rod from the hole in the mounting frame, and turn the button operating pin to the horizontal position.

Safety Precautions

- Ensure that the connecting rod is pulled out completely and it is horizontal to the interlock switch, otherwise the unlocking button cannot be installed. Note: Frame must be supplied by the user.
When using an HS9Z-SP51 mounting plate (sold separately) to install the HS5L on a frame, provide a hole for the connecting rod on the frame and mounting plate
For the mounting hole layout of interlock switches, see dimensions on E-046.

4. Install the unlocking button on the connecting rod by fitting the pin to the grooves on the back of the button, and fasten the base plate on the mounting frame using the screws.

. After fastening the screws, check if locking and unlocking operations can be performed.

Safety Precautions

- Install the rear unlocking button kit in the correct direction as shown below. Do not install the kit in incorrect directions, otherwise malfunction may occur.
- Do not apply strong force exceeding $100 \mathrm{~m} / \mathrm{s}^{2}$ to the interlock switch while the rear unlocking button is not pressed, otherwise malfunction may occur.

Unlocking the Manual Lock Using the Rear

 Unlocking ButtonUse the rear unlocking button when a worker is locked inside a safety fence (hazard area). (Compliant with escape release described in ISO14119 [2003] and GS-ET-19)

Procedure

- When the rear unlocking button is pressed, the interlock switch is unlocked and the door can be opened.
- To lock the interlock switch, pull back the button.
- When the button remains pressed, the interlock switch cannot be locked even if the door is closed, and the main circuit remains open.

Safety Precautions

- Install the rear unlocking button in the place where only the operator inside the hazardous area can use it. Do not install the button in a place where an operator outside the hazardous area can use it, otherwise the interlock switch can be unlocked during usual machine operation, causing danger.
- Operate the rear unlocking button by hand only. Do not operate using a tool or with excessive force. Do not apply force to the button from the direction other than the proper direction, otherwise the button will be damaged.

Recommended Tightening Torque

- HS5L interlock switch: 1.8 to $2.2 \mathrm{~N} \cdot \mathrm{~m}$ (M4 screws $\times 3$) ${ }^{\star}$
- Lid mounting screw: 0.5 to $0.7 \mathrm{~N} \cdot \mathrm{~m}(\mathrm{M} 3$ screw $\times 2$)
- Rear unlocking button: 0.5 to $0.7 \mathrm{~N} \cdot \mathrm{~m}$ (M3 screw)
- Rear unlocking button kit: 4.8 to $5.2 \mathrm{~N} \cdot \mathrm{~m}$ (M5 screw)
- Actuators

HS9Z-A51: $\quad 1.8$ to $2.2 \mathrm{~N} \cdot \mathrm{~m}(\mathrm{M} 4 \text { screws } \times 2)^{\star}$
HS9Z-A52: $\quad 0.8$ to $1.2 \mathrm{~N} \cdot \mathrm{~m}$ (M4 flat head screws $\times 2$)
HS9Z-A51A/A52A: 1.0 to $1.5 \mathrm{~N} \cdot \mathrm{~m}$ (M4 screws $\times 2)^{\star}$
HS9Z-A53: $\quad 4.5$ to $5.5 \mathrm{~N} \cdot \mathrm{~m}(\mathrm{M} 6 \text { screws } \times 2)^{\star}$ HS9Z-A55: $\quad 1.0$ to $1.5 \mathrm{~N} \cdot \mathrm{~m}(\mathrm{M} 4 \text { screws } \times 2)^{\star}$ HS9Z-A55S: $\quad 1.0$ to $1.5 \mathrm{~N} \cdot \mathrm{~m}(\mathrm{M} 4 \text { screws } \times 2)^{\star}$ HS9Z-BA5: $\quad 4.5$ to $5.5 \mathrm{~N} \cdot \mathrm{~m}(\text { M5 screws } \times 2 / 4)^{\star}$

* If the mounting screw recommended tightening torque values above is not satisfied, check loosening after installation thoroughly.
- Mounting screws need to be prepared by the customer.
- To avoid unauthorized or unintended removal of the interlock switch and the actuator, it is recommended that the interlock switch and actuator are installed in a secure manner, for example using special screws or welding the screws (IS014119)
- When installing the HS9Z-A51A and HS9Z-A52A actuators, use the washer (supplied with the actuator) on the hinged door, and mount tightly using two M4 screws.
Mounting centers: 12 mm (factory setting), adjustable to 20 mm

Instructions

Applicable Cable Glands
Use a cable gland with IP67 protection degree．
Applicable Cable Gland Dimensions

When Using Flexible Conduits（example）

Conduit Port Size	Plastic Cable Gland	Metal Cable Gland
M20	-	RLC－103EC20（Nihon Flex）

When Using Multi－core Cables（example）

Conduit Port Size	Plastic Cable Gland	Metal Cable Gland
M20	ST－M20X1．5＊ （Manufacturer：LAPP） （Distributor：K－MECS）	ALS－पDEC20 （Nihon Flex）

Different cable glands are used depending on the cable sheath outside diameter． When purchasing a cable gland，confirm that the cable gland is applicable to the cable sheath outside diameter．
＊When using ST－M20X1．5，use with gasket below：
GPM20（Manufacturer：LAPP Distributor：K．MECS）
Lead－in Wire Length and Wiring Examples

Part No．	Cable Orientation	Cable Length（L1）
$\begin{aligned} & \text { HS5L-ロロ4M-G } \\ & \text { HS51-ロロA1 M-G } \end{aligned}$	Straight	30 to 35 mm
$\begin{aligned} & \hline \text { HS5L-ロप4SM-G } \\ & \text { HS5L-ロप4LSM-G } \end{aligned}$	Side（right or left）	50 to 55 mm
		40 to 45 mm

Terminal wiring diagram

Notes：
When connecting the NC contact（11－12，21－22）of door monitor circuit and NC contacts（41－42，51－52）of the lock monitor circuit in a series as an input to a safety circuit，connect 12－41 or 22－51．

Cautions for Wiring

Use the following applicable wiring．Stranded wire or solid wire
（1 wire）： 0.3 to $1.5 \mathrm{~mm}^{2}$（AWG22 to AWG16）
Make sure to strip the wire insulation 8 to 9 mm from the end．If the strip length is too short，the wire may fall out．If the strip length is too long，it may short circuit with other wires．
Twist the wires and make sure that there are no wire whiskers．
When using stranded wires without ferrules，make sure that the core wires have not been loosened．
－For wiring，use screwdrivers as shown in the right．（The shape of the tip of the screwdriver is in accordance with DIN5264）
－The inserting port of the wire and screwdriver，and direction of the tip is as shown in the diagram below．

－When using ferrules for stranded wires，use the ferrule listed in the following table．

Compatible Wire		Model No．	Manufacturer
$0.34 \mathrm{~mm}^{2}$	AWG22	AIO．34－6TQ	Phoenix Contact
$0.5 \mathrm{~mm}^{2}$	AWG20	Al0．5－6WH	
$0.75 \mathrm{~mm}^{2}$	AWG18	Al0．75－6GY	
$1 \mathrm{~mm}^{2}$	AWG18	Al1－6RD	
$0.5 \mathrm{~mm}^{2}$	AWG20	TE0．5－8	NICHIFU Co．，Ltd．
$0.75 \mathrm{~mm}^{2}$	AWG18	TE0．75－8	
$1 \mathrm{~mm}^{2}$	AWG18	TE1．0－8	

Wire connection method

1．Insert the screwdriver into the square－shaped port from a slightly slanted angle as shown，until the screw－driver tip touches the bottom of the spring．Make sure that the direction of the blade edge is correct．
2．Push in the screwdriver until it touches the bottom of the port．The wire port is opened，and the screwdriver is held in place．The screwdriver will not come off even if you release your hand．
3．While the screwdriver is retained in the port， insert the wire or ferrule into the round－shaped wire port．
4．Pull out the screwdriver．
The connection is now complete．

Safety Precautions

When using wires with insulation diameter of $ø 2.0 \mathrm{~mm}$ or less，do not insert the wire too deeply where the insulation inserts into the spring clamp opening． Make sure that the wire insulation is stripped 8 to 9 mm and the wire is inserted to the bottom．

If there is a need to insert the screwdriver while holding the interlock switch with hands，be careful not to injure your fingers with the tip of the screwdriver． Connect one wire to one wiring port．

deep too deep
 the bottom
（According to IEC 60204 （JIS 9960－1）13．1．1 General Requirement）

HS5L Interlock Switches with Solenoid

Instructions

Changing the cable orientation
 (two-conduit model)

Cable orientation can be changed on two-conduit models
(HS5L- $\square \square 4 S M-G / H S 5 L-\square \square 4 L S M-G)$. Straight, left, and right orientation is available.
When shipped, the terminal cover is installed on the HS5L for straight or left cable orientation.
See below for mounting the cable rightward.
(1) Remove the cover mounting screws $(\mathrm{M} 3 \times 2)$ and remove the HS5L from the cover.
(2) Rotate the cover 180°.
(3) Re-intall the cover on the HS5L and fasten using the cover mounting screws. Note: Before tightening the cover mounting screws, slide the spacer in the direction opposite the screw positions to prevent it from coming into contact with the screwdriver.
$\begin{array}{r}\text { Safety Products } \\ \hline \text { Explosion Proof } \\ \hline \text { Terminal Blocks } \\ \hline \text { Relays \& Sockets } \\ \hline \begin{array}{r}\text { Circuit } \\ \text { Protectors }\end{array} \\ \hline \text { Power Supplies } \\ \hline \text { LED Illumination } \\ \hline \text { Controllers } \\ \hline \begin{array}{r}\text { Operator } \\ \text { Interfaces }\end{array} \\ \hline \text { Sensors } \\ \hline \text { AUTO-ID }\end{array}$

Interlock
Switches
Non-contact
Interlock Switches
Safety Laser
Scanners
Safety Light
Curtains
Safety

Opening conduit port

- Before use, knock out the conduit port where the connector is to be connected, using a tool such as screwdriver as shown in the figures.
- Before opening the conduit port, remove the terminal cover from the HS5L, and remove the locking ring for the cable gland installed in the terminal cover. - Be sure to remove any cracks or burrs on the conduit port, as it will impair waterproof performance.

Side orientation

Connector Wiring

Perform wiring according to following procedures (1) to (2).
(1) Insert the cable into the connector. Leave A and B untightened.
(2) Open the cover and insert the cable into the cover.

(3) Wire to the terminals.
(4) Tighten in the order of $A \rightarrow$ Cover $\rightarrow B$.

* To remove the wiring, turn the power off and then unwire in the order of $B \rightarrow$ cover $(\rightarrow$ waterproof gasket $\rightarrow A)$.
Note: When removing A, because the waterproofing gasket is tightly attached to the cable, pull out the gasket carefully with tweezers so that the gasket is not damaged before loosening A. Otherwise, the cable will rotate together with A when loosened, and might break due to excessive twisting. Also, when reassembling, place the gasket in the original position first.

Safety Precautions

- When opening the cover, be careful not Spring clamp $\begin{gathered}\text { Interlock } \\ \text { switch }\end{gathered}$ Spring clamp to lose the cover mounting screw.
- When tightening connector B, insert the cable into the connector, and set it to a position where the gasket of the connector holds the cable sheath, otherwise, its waterproof performance might be impaired.
- Tighten the connector in order of $A \rightarrow$ B. If connector B is tightened first, the wiring connected to the spring clamp terminal may become twisted when tightening A, causing disconnection or malfunction.
- Tighten the connectors with tightening torque according to the torque value recommended by the connector manufacturer. Otherwise, waterproof performance might be impaired.
- Do not exert excessive load, pressure, or tensile force on the cable, otherwise, disconnection or malfunction might occur.

Ideal as a safety measure for use on machines that do not shut down immediately or maintain high temperatures.

Many interlock switches on the market have 4 or 6 contacts. These interlock switches are used as they are, even though that many contacts are not used.

The revised EN ISO 14119 standard requires usage of two interlock devices to achieve PLe when using a Type 2 interlock device.
For one of the two interlock devices, 2 contacts are sufficient.

Enhance product value and take the lead from your competitors by introducing a safe machine that complies with international standards.
Product compliance with international standards are now essential, as with ISO9000 certification.

> 2-contact interlock switches with solenoid
> with high cost performance are ideal for customers who want to make use of the above advantages. For details, see E-033

